Effects of adenosine and adenine nucleotides on the atrioventricular node of isolated guinea pig hearts.

نویسندگان

  • L Belardinelli
  • J Shryock
  • G A West
  • H F Clemo
  • J P DiMarco
  • R M Berne
چکیده

The primary goal of this study was to determine whether the slowing of atrioventricular (AV) conduction by ATP is caused by ATP per se or is mediated by adenosine formed from ATP degradation. We assessed the effects of ATP, beta, gamma-methylene ATP, ADP, AMP, and adenosine on AV conduction time in the isolated perfused guinea pig heart. The cardiac effluent was collected and analyzed for its content of adenine nucleotides and nucleosides. Perfused ATP was rapidly and almost completely broken down to AMP and adenosine; only 2.5 +/- 0.5% of the infused ATP was recoverable in the effluent. A significant correlation was found between the effluent concentration of adenosine and atria-to-His bundle (A-H) conduction time. Compounds that altered the effect of adenosine on A-H conduction likewise altered the effect of ATP: (1) aminophylline, a competitive antagonist of adenosine, antagonized the ATP-induced A-H prolongation; (2) adenosine deaminase, the enzyme responsible for the deamination of adenosine to inosine, reduced the effect of ATP by 82%; (3) the adenosine transport blockers NBMPR and dipyridamole markedly enhanced the effect of ATP; and (4) EHNA, an inhibitor of adenosine deaminase, potentiated the effect of ATP. Furthermore, the less hydrolyzable ATP analog, beta, gamma-methylene ATP, was less potent than ATP in causing A-H prolongation. We conclude that the adenosine-like action of ATP on the guinea pig AV node requires that ATP first be degraded to adenosine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Nitric Oxide and Prostaglandins in the Effect of Adenosine on Contractility, Heart Rate and Coronary Blood Flow in Guinea Pig Isolated Heart

It is a well-established fact that adenosine and its receptor subtypes (A 1 and A ) are involved in changes of contractility, heart rate and coronary blood flow (CBF) under different circumstances. This study was conducted to evaluate the role of nitric oxide and prostaglandins in development of these changes. For this purpose, Nitro-L-Arginine methyl ester (L-NAME), and indomethacin as inhibit...

متن کامل

Dromotropic effects of adenosine and adenosine antagonists in the treatment of cardiac arrhythmias involving the atrioventricular node.

THE ELECTROPHYSIOLOGIC EFFECTS of adenosine and other adenine derivatives were first described by Drury and Szent-Gyorgyi in 1929.' These investigators clearly demonstrated that intravenous administration of adenosine produced a decrease in sinus rate and transient atrioventricular (AV) block. Adenosine is a mediator of many physiologic phenomena and most of the interest in its effects on the c...

متن کامل

Species-dependent effects of adenosine on heart rate and atrioventricular nodal conduction. Mechanism and physiological implications.

This study 1) compares the negative chronotropic and dromotropic actions of adenosine in guinea pig, rat, and rabbit hearts; 2) investigates the mechanism(s) for the different responses; and 3) determines the physiological implications. Isolated perfused hearts were instrumented for measurement of atrial rate and atrioventricular (AV) nodal conduction time. Differences in metabolism of adenosin...

متن کامل

Atrioventricular conduction disturbances during hypoxia. Possible role of adenosine in rabbit and guinea pig heart.

Adenosine and related compounds can produce atrioventricular (A-V) conduction block. Similar conduction disturbances are observed in myocardial hypoxia. To investigate the possibility that adenosine might be causally involved in hypoxic conduction disturbances, we measured A-V conduction times, subdivided into atrial-to-His bundle (A-H) and His bundle-to-ventricular (H-V) intervals, with extrac...

متن کامل

Heart Rate and Atrioventricular Nodal Conduction Mechanism and Physiological Implications

This study 1) compares the negative chronotropic and dromotropic actions of adenosine in guinea pig, rat, and rabbit hearts; 2) investigates the mechanism(s) for the different responses; and 3) determines the physiological implications. Isolated perfused hearts were instrumented for measurement of atrial rate and atrioventricular (AV) nodal conduction time. Differences in metabolism of adenosin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 70 6  شماره 

صفحات  -

تاریخ انتشار 1984